\qquad Date: \qquad
\qquad

Graphing Skill \#1: What Type of Graph is it?

There are different types of graphs that scientists often use to display data. They include:

Bar Graphs	Line Graphs

Practice Problems

Based on these definitions, and the descriptions of the experiments below, please put an " X " in the box for the type of graph that would be most appropriate.

$\#$	Description	Bar	Line
Ex	A graph showing the number of 5 ${ }^{\text {th }}$ graders who prefer Coke or Pepsi	X	
1	A graph showing how a newborn baby's weight changes over time		
3	A graph showing the distribution of trees of different size groups (e.g. 0-10cm, $10-20 \mathrm{~cm}$, etc...) in a forest		
4	A graph showing the relationship between height and arm length		
6	A graph showing the amount of rainfall, by month over a 12 month period		
7	A graph showing the number of ice cream cones purchased as a function of the day's temperature		
8	A graph showing the number of pushups done each day during a 2-week training program		

Graphing Skill \#2: Laheling Axes

When labeling your axes, keep 3 things in mind:

- What the scientist is trying to change is labeled along the X axis (IF/independent variable).
- What the scientist is trying to figure out is labeled along the Y axis (THEN/dependent variable).
- Units should be included in parentheses (cm, kg etc.) following the axis label

Practice Problems

For each experiment described below, label the X and Y axes.
Example: A farmer wants to know if there is a relationship between the amounts of fertilizer (in kilograms) she uses and how tall her corn grows (in centimeters).

Graph 1: A ball is dropped from several distances above the floor (in meters) and the height it bounces is then measured (in centimeters).

Graph 3: A fisherman used fishing lines of several different gauges (test pounds) and recorded the number of fish caught on each gauge.

Graph 5: Is there a relationship between the numbers of hours a student studies and the score s/he gets on the weekly quiz?

Graph 2: A candle was burned under glass jars of different volumes (in mL) to see if the volume of the jar affects the length of time (in seconds) the candle burns.

Graph 4: Geologists wanted to know if there was a relationship between the density (in $\mathrm{g} / \mathrm{cm}^{3}$) of a rock and how many meters down it was collected from.

Graph 6: A scientist studied the relationship between amount of rain (in cm) and the numbers of zebra babies born each spring.

Graphing Skill \#3: Greating Titles

When writing a title for your graph, please remember:

- Some graphs need more explanation than others. Make sure your reader would be able to understand what your data represent without having to read your lab.
- Can be presented in the form "Y versus X" (MOST OF THE TIME)

SAMPLE: A farmer wants to know if there is a relationship between the amount of fertilizer (in kilograms) she uses and how tall her corn grows (in centimeters).

The Relationship between Corn
Height and the Amount of

OR
$\underbrace{\text { F }}_{\text {Amount of Fertilizer (kg) Fertilizer Used }}$

Practice Problems

For each experiment described below, write a title for each graph

Graph 1: A ball is dropped from several distances above the floor (in meters) and the height it bounces is then measured (in centimeters).	Graph 2: A candle was burned under glass jars of different volumes (in ml) to see if the volume of the jar affects the length of time (in seconds) the candle burns. Jar Volume (mL)
Graph 3: A fisherman used fishing lines of several different gauges (test pounds) and recorded the number of fish caught on each gauge.	Graph 4: Geologists wanted to know if there was a relationship between the density of a rock and how many meters down it was collected from. Depth of Collection (m)

Graphing Skill\#4: Plotting Points

Plotting points can be easy if you follow these simple steps...

- STEP 1: Select the first pair of values from the data table (X and Y).
- STEP 2: Draw a light dashed line up from the number on the X axis and over from the number on Y axis.
o Once you get good at plotting points, you won't need to draw these lines anymore
- STEP 3: Where these dotted lines cross, put a dark point. Repeat for the next pair of points (coordinates)

Practice Problems

Plot these points. The first pair has been plotted for you as an example.

Graph 2

